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Abstraet--A numerical solution is obtained by the finite element method for the Graetz problem of forced 
convection heat transfer in the channels of plate-type monolith catalysts. For this purpose a generalized 
model is constructed for the duct geometry, the fully developed laminar velocity profile is calculated, and 
the heat transfer problem is solved for both uniform wall heat flux or temperature. The results are 
summarized in interpolated functional forms providing the axial evolution of the Nusselt number. Such 
formulae represent a prerequisite to the development of design equations for mass-transfer coefficients in 

plate-type monolith catalysts for the selective catalytic reduction of NOx with ammonia. 

INTRODUCTION 

Forced convection with laminar flow in straight ducts 
of a constant cross-section has important practical 
applications. Shah and London [1] have extensively 
surveyed the well known Graetz problem for different 
geometries: from ci~rcular ducts to parallel plates, from 
rectangular sections to triangle passages they 
attempted to systematize thermal boundary 
conditions, considering those most common in the 
literature and interesting in applications. They also 
reported solutions ['or sine ducts, elliptical forms, cir- 
cular sectors and other singly connected configur- 
ations, that is geometrical shapes delimited by a single 
closed line. Double and multiple connected ducts were 
considered, too. 

After Shah and London's publication, other 
authors have addressed the Graetz problem: different 
numerical methods have been tested on traditional 
shapes [2-11]; the less conventional geometries have 
been studied with regard to entrance effects [12-21]; 
axial conduction has been considered [22-24]; and 
finally the analysis of non-Newtonian fluids has begun 
to appear [25-28]. 

In this article we consider the forced convection 
heat transfer problem for ducts of complex geometry 
corresponding to the channels of plate-type monolith 
catalysts [29, 30]. We first examine the hydrodynamic 
problem to obtain information on the laminar velocity 
profiles inside the monolith channels; then we analyze 
the heat transfer problem, and eventually derive 
interpolated expressions for the axial evolution of the 
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Nusselt number with regard to different boundary 
conditions. 

The novelty of this paper lies in the duct geometry 
considered, as well as in the algorithm adopted for 
numerical solution of the problem. The choice of the 
duct geometry is motivated according to two different 
arguments. First of all, the cross-sections of plate-type 
monoliths exhibit a peculiar configuration including 
two non interacting channels. In this paper we illus- 
trate an approach suitable to reduce such a situation 
to the analysis of a single duct. The same analysis is 
also expected to provide applied benefits, since cata- 
lytic monoliths in plate form are actually of com- 
mercial interest for the selective catalytic reduction 
(SCR) of NOx with ammonia, SCR processes being 
the most efficient technology available for the deni- 
trification of flue gases from power stations [30]. It 
has been shown in the literature [31] that gas-solid 
mass transfer coefficients in monolithic honeycomb 
SCR reactors with simple channel geometry (circular, 
square and triangular) are adequately predicted by 
relying on the similarity with the corresponding heat 
transfer problems for constant wall temperature or 
constant heat flux. It is of practical relevance for the 
modelling of industrial SCR monolith reactors to 
establish whether the same conclusions apply also to 
the class of plate-type monolith catalysts: as men- 
tioned above, however, solutions of the thermal prob- 
lem for this more complex geometry are not available. 
While the derivation of such solutions on a generalized 
basis is the scope of the present work, in a future 
article [32] they will be applied to the specific purpose 
of developing a design procedure for plate-type mono- 
lithic SCR reactors. 

1963 
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NOMENCLATURE 

AH, BH, CH, DH interpolation parameters for v* 
Nu(H2)--equations (26)-(30) 

Av, BT, CT, DT interpolation parameters for 
Nu( T)---equations (17)-(22) 

cp fluid specific heat 
Dh hydraulic diameter 
DR geometrical parameter representative 

of cross sectional shape, = ( R -  R0) 
heat transfer coefficient 
channel pitch 
= 2H, see Fig. 1 

fluid thermal conductivity 
longitudinal extension of cross section 
= 4.2335 H see Fig. 1 
= L-3 .173  H, see Fig. 1 

Nusselt number--(hDh/k) 
pressure 
Pecl6t number--(VDhpCp/k) 
ratio of dimensionless areas of (B) and 
(A) sections, respectively--(SgDZB/ 
SBDh2A) 

rD ratio of hydraulic diameters of (B) and 
(A) sections, respectively--(Du.A/Dh,B) 

rv ratio of dimensional average velocities 
of sections B and A, respectively-- 
((V}A/(V>B) 

O volumetric flow rate 
R geometrical parameter representative 

of cross sectional shape--(L/2H) 
R0 limiting value of R ( = 2.116, see 

Fig. 1) 
S cross-sectional area A 
T dimensional temperature AB 
To value of the initially uniform 

temperature profile B 
< Tcm > dimensional flow average temperature cm 

(cup-mixing) H2 
(Tv) dimensional wall average temperature T 
v dimensional axial velocity F 

h 
H 
H' 
k 
L 
L1 
L2 
Nu 
P 
Pe 
r 

dimensionless axial velocity-- 
equation (7) 

(v)  dimensional velocity averaged over the 
duct cross-section 

xyz dimensional Cartesian coordinates 
x*y*z* dimensionless Cartesian 

coordinates----equation (7) 
z* Graetz axial coordinate = z/(Pe~Dhi). 

Greek symbols 
F cross-sectional boundary 
/~ fluid dynamic viscosity 
®* dimensionless temperature--  

equations (4), (5) 
(®*m) dimensionless flow average 

temperature (cup-mixing) 
(®*)  dimensionless wall average 

temperature 
p fluid density 
z dimensional peripheral flux 
(~> dimensional peripheral average flux 
z* dimensionless peripheral flux 
~b characteristic angle of the cross section 

( = 57 °, see Fig. 1). 

Superscripts 
* dimensionless variable 

asymptotic value for z ~ ~ .  

Subscripts 
relative to (A) geometry--Fig. 1 
relative to (A) + (B) geometry, i.e. to 
elementary monolith cells--Fig. 1 
relative to (B) geometry--Fig.  1 
cup-mixing average 
relative to (H2)-condition 
relative to (T)-condition 
calculated at the duct wall. 

Concerning the numerical solution of the partial 
differential equations associated with either the hyd- 
rodynamic or the thermal problem, in this work we 
adopt the Galerkin finite element method (FEM) 
rather than more usual approaches based on finite 
differences or orthogonal collocations. Indeed, the 
finite element analysis offers some advantages over 
other methods. Primarily, it gives powerful tools, 
namely irregular meshes, isoparametric elements [33] 
and graphical gridding, to reproduce complex geo- 
metries such as those involved in the present work; 
also, FEM provides local and global error estimates 

useful in adaptive refinement processes and con- 
vergence studies [34-36]. 

THEORY AND METHODS 

Geometrical analysis 
For our purposes it is first necessary to identify the 

geometrical domain of interest. In the following, a 
geometrical reference model is presented. 

Inspection of  commercial monolith plate-type cata- 
lyst matrices shows the existence of an elementary cell 
in the monolithic section. As represented in Fig. 1, the 
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H'= 2H I L1-- 4.2325 H 
L2= L-3.1734 H 
0=57* 
R = t./2H 
DR-- R-R o 

H' / 

Section ~AIJ Section ~BI2 

Fig. 1. Typical configuration of plate-type monolith catalyst and two-channel parametric geometrical 
model. All lengths are in cm. 

modular monolith matrix includes two different kinds 
of geometries which are alternated side by side: the 
elementary cell consists of a section A, similar to a 
parallelogram, and a section B, which exhibits charac- 
teristic sinusoidal appendices serving as spacers. A 
representative geometrical parameter D R  is defined, 
which equals the difference between the ratio, 
R ( = L / 2 H )  and its limiting value, R0 (=2.116), cor- 
responding to compenetration of the sinusoidal 
appendices with the disappearance of Section A (Fig. 
1). 

Six values o f  D R  have been chosen for the numerical 
study of fluid dynamics and heat transfer in the forced 
convection flow in such sections (see the second col- 
umn of Table 1). The six values are selected to cover 
the field of possible industrial interest (a rep- 
resentation of such geometries appears in Fig. 2). 
Though in the following they are studied individually 
with respect to bo~Lh the hydrodynamic and the heat 
transfer problem, it is worth noting that the six con- 
figurations actually serve as a discrete representation 
of the general georaetrical model of plate-type mono- 
liths. 

Finally, it is necessary to specify that even if under 

Table 1. Geometric and fluid dynamic properties of the inves- 
tigated geometries 

Sample DR r rD rv 

1 0.779 0.55777 0.68729 0.39702 
2 1.837 0.63827 0.75701 0.51689 
3 3.689 0.72034 0.84897 0.63244 
4 5.532 0.80671 0.88427 0.69588 
5 7.052 0.81096 0.90461 0.75363 
6 11.628 0.87216 0.93667 0.85396 

normal operating conditions communication between 
the channels may be possible, however the absence of 
every form of interaction is assumed in the following 
analysis. This hypothesis results in the identification 
of two different and separated cross-sections A and B 
with different geometries, each of them requiring a 
dedicated investigation of fluid dynamics and heat 
transfer. Thus, for each D R  value the analysis of such 
two domains will be carried out, as well as a sub- 
sequent combination of results to arrive at a unitary 
representation referring to a single pseudo cross-sec- 
tion of the monolith channel. 

The velocity problem 
We consider steady-state flow of a fluid with a fully 

developed laminar velocity profile. Assuming constant 
physical properties p, p for the fluid and neglecting 
body forces, centrifugal effects, Coriolis action and 
electromagnetic interaction, the momentum equation 
can be written in the following dimensional form [1]: 

82v ~2v 1 dp 
V2v = ~ + ~y2 p/~ dz - cl, (1) 

where v is the axial component of velocity which must 
satisfy the boundary condition at the border 

v = 0 V(x ,y)  e F .  (2) 

We do not take advantage of the oblique symmetry 
of geometries to avoid the presence of mixed deriva- 
tives in equation (1). So we solve the velocity problem 
in the form of equations (1) and (2), identifying the 
mathematical boundary F with the real channel walls 
of the monolith. Then we choose a dimensional for- 
mulation to impose the same pressure gradients in 
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Geometry (A) 

[ - - ]  Geometry (B) 

Fig. 2. Elementary cell of the assumed plate-type monolith geometry. DR increases from top to bottom. 

channels A and B, and we assume the constant Cl is 
equal to unity. 

Notably, the assumption of laminar flow is con- 
sistent with the flow conditions prevailing in SCR 
monolith catalysts. 

The temperature problem 
This problem concerns the solution of the energy 

conservation equation for a fluid in laminar flow in a 
duct under different thermal boundary conditions [1]. 
The fluid properties p, k, ep are assumed constant and 
the laminar fully developed velocity profile is known 
by assumption, as determined from solution of the 
hydrodynamic problem. Viscous effects and axial 
thermal diffusion are neglected and we exclude phase 
transitions and chemical energy changes. Accordingly, 
the governing equation is [1] 

c3T /'O2T ~2T~ 
VpCp ~zz = k ~ x 2  + @2 ] (3) 

with the temperature, T, being the only unknown. 
Three different boundary conditions are most often 

considered [1]: the (7)-condition involves a uniform 
and constant temperature profile at the wall, both 
peripherally and axially; the (H2)-condition requires 
a uniformly distributed heat flux on the channel sec- 
tion and a constant average heat flow in the axial 
direction; the (H1)-condition imposes a uniform wall 
temperature at any cross-section and a constant wall 
heat transfer rate in the axial direction. In view of the 
eventual application of the present results to mod- 
elling of SCR reactors, in this paper only the (7) and 
(H2) conditions are examined. In fact, they exhibit 
the same mathematical formulation of the analogous 

problem concerning gas-solid mass transfer in the 
monolith channels in the two limiting cases of infi- 
nitely fast kinetics (purely physical regime) and infi- 
nitely slow kinetics (purely chemical regime), respec- 
tively [37-39]. Accordingly, the Nusselt numbers 
derived from solutions of the two thermal problems 
provide also the limiting values of the dimensionless 
gas-solid mass transfer coefficients (Sherwood num- 
bers) for fast and slow kinetics, respectively [31]. This 
point will be further developed in a forthcoming paper 
[32]. 

Referring to the (7) and (H2) conditions, the fol- 
lowing dimensionless temperatures are usually intro- 
duced [1]: 

T - - ( T r )  
®* - - -  for (T)-condition (4) 

To - ( T r )  

T-T0 O * -  
"cD h 

k 

for (H2)-condition. (5) 

Thus, equation (3) can be rewritten in dimensionless 
form as 

where 

0®* 020* 020" 
V~l,__ 

Oz* ~x .2 + Oy .2 ' (6) 

x y ,  y z* - z v* - v 
x* = ~ = ~ eeDn (v)" (7) 

Finally, in both situations the initial condition 
involves a uniform thermal profile, at the value of 
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unity for the (T) case and zero for the (H2) case. Then 
we have 

(T)_condition { B.C ®* I.C" = 0 V(x*,y*,z*)eF 
®* = 1 V(x*,y*) atz* = 0. 

(8) 

B C  z * = l  V(x*,y*,z*)eF 
(H2)-condition 

I.,~.'~ O* = 0 V(x*,y*) atz* = 0. 

(9) 

Problem analysis 
The study of fluid dynamics and heat transfer in the 

geometrical model of the plate structure is developed 
along four stages: 

(1) Solution of the hydrodynamic problem, equa- 
tions (1) and (2); :since the monolith configuration 
includes two different kinds of channel sections, the 
velocity problem has to be solved separately for 
domains A and B. The operation is repeated for the 
six different values of the parameter DR. 

(2) Definition of a single representative fluid 
dynamic variable: the construction of a global average 
velocity ((V)AH) is proposed. The operation involves 
the combination of the average velocities in channels 
A and B ((V)A, (V)B) for the six different values of DR 
and the subsequent definition of the relation between 
(V)AB and DR. This results in the construction of a 
functional from (V)AB(DR) which allows a global one- 
dimensional representation of fluid dynamics for 
every value of DR. Construction of (V)AB is described 
in the Results and Discussion Section. 

(3) Solution of the temperature problem, equations 
(3) and (4) (T-condition) or equations (3)-(5) (H2- 
condition), and determination of the streamwise evol- 
ution of the Nusselt number along the axial coor- 
dinate. As in point 2 above, the study of two different 
Sections A and B is required for six different values of 
DR, so that 12 discrete axial profiles of the Nusselt 
number are generaled. 

(4) Definition of a single representative heat trans- 
fer variable: like in the velocity problem the con- 
struction of a single Nusselt number (NUAB) is pro- 
posed for the six geometries to represent the heat 
transfer process in a global way. The operation is 
organized in three ,;ubsequent steps: 

(a) combination of channel A and B Nusselt num- 
bers (NUA, Nun) and definition of a global Nusselt 
number (NUAB) 

DhA B I~AB DhA a ( T ) AS 
NUAa k k((Tcm)AB--(TT)AB)" (10) 

The calculations are made using the discrete axial 
profiles of Nua a~Ld NuB constructed by numerical 
solution of the temperature problem and yields six 
discrete values of global NUT,AB as well as six values 

of global NuI-I2.Aa along z% the global axial coor- 
dinate. 

(b) Empirical fitting of the relationship between 
NUAB and ZA*B. This operation is carried out for every 
chosen value of DR, and leads to the definition of 
six global NUx.AB and six global NUm,AB continuously 
defined along z%. 

(c) Identification of analytical models rep- 
resentative of the heat transfer characteristics of all the 
considered geometries, reproducing in a continuous 
fashion the relationship between the axial evolution 
of the global Nusselt number and the parameter DR: 
the results obtained from FEM simulations are 
extended to the whole geometrical model and a gen- 
eralized functional form NUAB(Z*a,DR ) is derived for 
both (T) and (H2) conditions. 

Numerical methods 
The analysis of the problem requires the solution 

of partial differential equations as well as the 
regression of results (in terms of Nusselt numbers) as 
functions of z*B and DR. 

Nonlinear regressions are carried out using the 
FORTRAN program BURENL [40], implementing a 
collection of direct and indirect search methods for 
minimization of the residual sum of squares. 

For the solution of PDEs, an adequate numerical 
approach must be implemented in order to meet sat- 
isfactorily the boundary conditions associated with 
the complex duct geometry. In this work we apply the 
Galerkin finite element method [33]. 

The basic idea of FEM consists in reducing the 
problem size by dividing the domain into smaller 
regions, called elements, where the governing equa- 
tions are approximated according to the methods of 
weighted residuals. Within each element the simplified 
governing equations have the same formal expression, 
and can be assembled to retain the unity of the prob- 
lem and the continuity of the solution to generate an 
overall system of algebraic or ordinary differential 
equations, depending on the nature of the original 
PDEs. Since the element is an independent unit, it can 
be locally adjusted to describe a particular boundary: 
this secures a higher accuracy for the description of 
complex domains than offered by, e.g. finite differ- 
ences of orthogonal collocations. 

In order to allow an easy description of the geo- 
metrical model of Fig 1, isoparametric serendipity 
second-order elements (triangular-six nodes and 
quadrilateral-nine nodes) [33] and graphical gridding 
have also been implemented in a specific FORTRAN 
code. Also, solution of the overall system of equations 
has been carried out by Gaussian elimination (for 
axial-developed problems) and by Gear's multivalue 
ODE integration method [41] (for axially developing 
problems), achieving efficient convergence. Finally, an 
accurate phase of postprocessing produces graphical 
tools to check the results qualitatively and quan- 
titatively. 
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Fig. 3. Velocity problem: maximum and average velocity for channels A vs DR. The velocities are divided 
by the squared hydraulic diameter so as to be compared with rectangular shape and parallel plate literature 

data [1]. All results are relative to a unit c~ constant [see equation (1)]. 
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RESULTS AND DISCUSSION 

The velocity problem 
Section (A). The study of channel A reveals a simi- 

larity with the hydrodynamics of laminar flow in rec- 
tangular ducts. Indeed, large aspect ratios make the 
influence of the oblique sides negligible, so that a 
parabolic velocity profile covers most of each section, 
giving average and maximum velocities close to the 
corresponding literature data [1] for rectangular chan- 
nel shapes (Fig. 3). In the limit of DR ~ ~ the situ- 
ation of parallel plates is recovered. 

Section (B). The analysis of laminar flow in chan- 
nels B shows a different and more complex situation, 
as illustrated in Fig. 4. For large values of DR the 
velocity profile includes two different contributions: 
on one hand the curvilinear appendices exhibit a typi- 
cal concentric sinusoidal profile; on the other hand 
the central portion shows an approximately parabolic 
profile quite similar to the case of long rectangles 
or parallel plates. For small values of DR the two 
contributions compenetrate each other and it becomes 
impossible to trace their distinctive features separ- 
ately. 

A synthetic representation of average and 
maximum velocities upon varying DR is shown in Fig. 
5: even if increasing DR reduces the average velocity, 
the maximum velocity does not converge to that 
characteristic of parallel plates. Thus, differently from 
Sections A, the parallel plates provide an asymptotic 
situation for B geometries only in a mean sense. 

Combination. In order to achieve a unitary rep- 
resentation of fluid dynamics for the two-channel 

model of Fig. 1 we define a global average velocity 
((V)AB). For each considered value of DR it is cal- 
culated according to the following equation: 

(v)ASA +(V).SB 
(V)aB = (1 1) 

SA+S. 

The volumetric flow rate (Q) is treated in the same 
way, too. 

To generalize the results, both (V)AB and Q are then 
expressed as functions of the geometrical parameter 
DR. The resulting empirical formulas are shown 
below [equations (12) and (13)] 

(V)AB = 0.0154+9.78 × 10-3DR -244× 10-' 

× exp (-- 1.48 × 10-]DR) (12) 

QAB = 4.986 x 10 -2 + 1.035 × 10-2DR. (13) 

Both equations yield less than 0.3% errors when 
compared to calculated data. 

The temperature problem 
In the following, the (T) and (H2) boundary con- 

ditions will be treated separately for the sake of clarity. 

( T)-Condition 
Section (A). For channel A the use of about 300 

nodes and nonuniform meshes leads to converged 
results in accordance with literature data [1] for rec- 
tangular duct shapes, which confirms the negligible 
contribution of oblique sides. The results plotted in 
Fig. 6 show that increasing DR brings about greater 
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Fig. 4. Velocity problem: fully developed laminar velocity profiles in channels B. 

Nusselt numbers: in the limit of  DR -~ oo the same Nu 
evolution as in parallel plates is recovered. 

Section (B). The study of Section B reveals a more 
complex situation dominated by two different asymp- 
totic behaviours (see Fig. 7): 

(1) In the entrance region (see Table 2 and Fig. 8) 
the smaller thermal resistance of the parallel sides in 
section B prevails on the longer effective conduction 

path length for energy transfer from wall to bulk 
associated with the corner-shaped sinusoids, so that 
heat transfer is controlled by the central portion of 
Section B, and a thermal behavior similar to that of 
ducts with rectangular cross-sections is evident. Also, 
increasing DR emphasizes the importance of  the cen- 
tral zone, resulting in a reduced average heat transfer 
resistance. Thus, like for Section A, at small zB increas- 
ing DR results in greater Nusselt numbers: in the limit 
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Fig. 6. (/]-condition: axial evolution of the Nusselt number of channels A. 

of DR ~ oo, the Nu-evolution typical of  parallel plates 
is recovered. In fact, for the sixth geometry 
(DR= 11.628) at z * =  1 . 0 x l 0  -6 we calculate 
Nu = 118.19, which is close to literature data [1] for 
parallel plates (122.94). 

(2) On the other hand, in the region of nearly 
developed thermal profile the Nusselt number  of Sec- 
tion B is controlled by the curved appendices (see 
Table 2 and Fig. 8). Because of  its smaller thermal 

resistance, in fact, the central zone is reached before 
thermal equilibrium with the wall, so that its con- 
tribution to heat transfer becomes already negligible 
when the T-profiles in the sinusoids are still evolving. 
Under  such conditions an increment of DR produces 
two opposite effects: while it enhances heat transport  
in the central region, it also causes the same central 
port ion to reach earlier thermal equilibrium with the 
wall, which makes the sinusoidal appendices con- 
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Fig. 7. (T)-condition: axial evolution of the Nusselt number for channels B. For the sake of clarity the 
representation is subdivided into three different portions showing the rectangle-like and sine-like asymptotic 

behaviours and the intermediate transition. 

trolling the wall--bulk heat transfer process over a 
longer stretch of the axial coordinate. For  small DR 
the first effect is stro:ager; for larger sections the second 
one dominates: this explains the dependence of the 
asymptotic Nusselt number on DR characterized by 
an inflection point ~,;hown in Figure 9. Notice that, in 
contrast with the sit uation of the entrance region, here 
for DR ~ ~ one approaches asymptotically the heat 
transfer behaviour of the sinusoidal section: our 
numerical solution yields Nu~ = 2.195 (confirmed by 
an additional test for DR = 15), which is close to the 
literature data of 2.12 for sinusoidal ducts [l]; the 
small difference is due to an interaction with the cen- 
tral region which cuts off at three quarters the sinus- 
oids and slightly enhances the heat transfer efficiency. 
The weak maximum of Nu~ in the region of small DR 
in Fig. 9 can be rationalized by the transition to a 
completely different fluid dynamic situation devoid 
of the central parabolic contribution and exclusively 
dominated by the s:[nusoidal appendices. 

Combination. In order to achieve a unique Nusselt 
number of a one-dinaensional representation, a global 
NUT,AB is calculated, using the discrete axial profiles of 
NUT,A and NUT,B ge, nerated by numerical solution of 

the temperature problem. The formulae employed for 
this purpose involve the fluid dynamic hypothesis of 
equal pressure loss in the channels. They make use of 
the dimensionless relationships (4), (5) and (7) and of 
the Nusselt number definition [equation (10)]: on this 
subject notice that Sections A and B have different 
hydraulic diameters Dh and that the construction of 
NUv,Aa requires the use of a combined hydraulic diam- 
eter (Dh,AB). Finally the formulae consider the phase 
displacement between the Graetz-coordinates of the 
channels (ZA* and z*) and that of the elementary cell 
(z%) 

z (1 + r2r)(1 + rvr2r) 
z~ z~a (14) 

PegDhg rvr 2 (1 + rot) 2 

z _ z*a (1+r2r)( l+rvr2r)  (15) 
z~ PeBDha (1 + rDr) 2 ' 

where r D equals the ratio of hydraulic diameters 
(Dh,k/Dh,,); rv compares the dimensional average vel- 
ocities ((V)A/(V)a); and r represents the proportion 
between dimensionless areas (SAD2B/SBD2A); for 
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Table 2. Entrance and asymptotic Nusselt numbers for the (7)-condition in channel B 

z* Sample (1) Sample (2) Sample (3) Sample (4) Sample (5) Sample (6) 

0 .10×  10 -6 0.93461 x 102 0.10170 x 103 0 .10645× 103 0.11137 x 103 0.11450 x 103 0.11820× 103 
0.33081 × 101 0.33400 x 10 z 0.31550 x 101 0.26990 x 101 0.22810 x l0 t 0.21950 x 10 ~ 

z~--- 5 .0E-3 /~', 
! .,(lilK 

z~-: 5 .0E-2  

t 

i 

1.0E-2  : ~ .  

/. I~ I 

z~= 1.OE-1 

z*l~ 2 .9E-1 

I 

~B = 2 .9E-1 

Fig. 8. (/)-condition, sample 4, channel B: temperature distribution over the cross-section at different 
values of the axial coordinate. 

numerical values of these parameters see the last col- 
umns of Table 1. 

So for the (T)-condition we have 

(1 +r~r) <®*>sNUB + <O*)ANUAr 
NUT,Ab -- (1 +ror) (<Oc*m)a + (Oe*m>Arvr2r~ 

(16) 

The calculation, made for every chosen value of 
DR, produces the axial profiles shown in Fig. 10. 
Here, the calculated results are represented by tri- 
angular symbols, whereas, a solid line shows the inter- 

polating model based on the following functional 
form: 

N U T , A B  = NU~,As +AT(1000Z~s)-BT 

exp ( -  CT(DT + Z'S)) 
× (17) 

exp ( -  Cx(DT + z~s)) + exp (CT(DT + Z'B))" 
The form of equation (17) derives both from empiri- 

cal consideration and from usual literature 
expressions [42]. Among  the tested models, it best 
reproduces the characteristic shape due to the pres- 
ence of two different asymptotic Nusselt numbers 
(Nu~ and Nu~): it secures less than 0.5% errors for 
all the six values of DR. 
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(a) ~ ,  [ .......... graphic interpolaUon 

2 
.... ' " ~  (5) 

(63 
0 

2 [ . . . . .  [ ' i I I I l - -  

0 2 4 6 8 10 12 14 16 

DR 
Fig. 9. (7)-condition: asymptotic Nusselt number in channels B vs DR. In addition to the values calculated 
for the six samples of Table 1 the asymptotic number of DR = 15 is reported to confirm the trend for 

DR ~ oo. 

To extend the results to all the other possible con- 
figurations of the geometrical model, the calculated 
values of AT, BT, CT, DT and the combined NU~AB are 
fitted as functions of DR. The results of this analysis 
are summarized in the following: 

AT(DR) = 11.665+ 192.167DR° 2851exp (--0.9027DR) 

x exp (-- ].5DR 2 + 1.267DR+ 8.8671) (18) 

BT(DR) = 0.3467+ 5.0373 × 10-2DR 03°723 

xexp(--0.49634DR) (19) 

CT (DR) = 10.1252 + 0.9877 exp (0.1186DR) 

(20) 

DT (DR) = -- 0.09948 + 3.5016DR o.763 o 1 

×exp(-2 .2214DR °'53113) (21) 

Nu~,AB(DR) = 2.19_';-- 0.03524(DR 42495 + 6.9217DR) 

× exp (-- 0.7039DR) log (0.1899DR). (22) 

Notice that all the functional forms above derive 
from purely empirical considerations: since we are 
performing a regression on regression results, it is not 
possible to associate any physical meaning with the 
parameters values. In terms of accuracy, however, the 
above formulation seems quite satisfactory: it repro- 
duces the relation NUT.AB(DR,z*B), and by means of a 
simple one-dimensional energy balance integration 

d(Oc*m) 
. . . .  4 N u ( ( O * )  -- (®*)) (23) 
dz* 

it gives the axial evolution of the flow average global 

temperature ((®*)AB) with less than 5% errors when 
compared to FEM rigorous but extremely more 
expensive results. 

(H2)-Condition 
Section (A). The axial evolution of the calculated 

Nusselt number upon varying DR are shown in Fig. 
11. A section of larger DR gives a bigger NuB, although 
the growth of the Nusselt number is slower than in 
the (7) case. Similar to that case, however, the behav- 
iour of typical of parallel plates is asymptotically reco- 
vered for DR --+ oo. 

Section (B). For the (H2)-condition all numerical 
studies show a different situation with respect to the 
(7)-condition (Fig. 12). Indeed, the reason for the 
distinction is clear: the (H2)-condition, involving a 
constant heat flux, indefinitely allows for heat exch- 
ange also in the central block of the channel section. 
Therefore, the present condition lets the behaviour of 
parallel plates be the natural asymptote (DR--* oo) 
for the (B) geometry at every z*. 

Combination. The global Nusselt number (Nu,2.AB) 
is calculated according to the following equation: 

1 
N/2H2'AB -- NUBr2r+NUA r(rvro -- l) 2" 

- -  4 z %  - -  

NuANuB(1 + r2r) rv(rro + 1) 2 

(24) 

Equation (24) derives from a combination process 
similar to that for the (/)-condition: the parameters 
r, rv and rD have the same meaning (Table 1) and z*B 

• still represents the Graetz-coordinate based on a glo- 
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Fig. 10. ( /)-condition: axial evolution of  the global Nusselt  number.  Discrete results and interpolating 

model. 



Laminar flow and forced convection heat 1975 

2 0 0  . -  

N U l l 2 ,  A 
10o 

50 

2 0  

1 0  

5 

2 

1 

1E. .07 

"-.,,.. ".~...,',~, 
, : ' . . . :~,  

/ I ~ ~ : -  : \ m ~  /"-L"<.?".-.'..'~ 

: t  ..................................... / 

. . . . . . . .  I . . . . . . . .  I . . . . . . . .  I . . . . . . .  I . . . . . . . .  I . . . . . . . .  I 
1 E - 0 6  1 E - 0 5  0 . 0 0 O l  0 ,001  0 .01  0 ,1  

I t  

Z A 

Fig. 11. (H2)-condition: axial evolution of Nusselt number in channels A. Legend of the curves as in Fig. 7. 
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Fig. 12. (H2}-condition: axial evolution of  Nusselt number in channels B. Legend of  the curves as in Fig. 7. 
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Fig. 13. (H2)-condition: axial evolution of global Nusselt number. Discrete results and interpolating model. 

bal elementary cell [equations (14) and (15)]. In 
addition we only introduce in equation (24) the well 
known axial evolution of the flow average tem- 
peratures for the (H2) condition (i -- A,B) [1] 

( ® * ) i  = 4z*. (25) 

The discrete axial profiles obtained from this oper- 

ation are fitted satisfactorily by an equation in the 
form (see Fig. 13): 

1 
NUH2'AB - -  A H  + BHZ*. 

+ C.  (1000z'u)- o. exp (--  30z's). (26) 
Equation (26) secures less than 1.5% error in cal- 
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culating the flow average global temperature 
( (O~)AB).  

Like the (T)-coladition, the relationship between 
global Nusselt number and geometry of  the channel 
section is described by means o f  parameters An, Bn, 
Cn, Dn, whose values calculated for the six selected 
D R  values are adequately fitted by the following 
empirical expressions: 

A n ( D R )  = 0.1215+0.4114DR °2451 

× exp ( -0 .0477DR)  (27) 

Bn(DR)  = 1.5727DR-°555° exp (--0.1807DR) 

(28) 

Cn(DR)  = 9.2610--4.7589DR -°°121 

x e x p  ( -0 .2717DR)  (29) 

DH(DR) = 0 .3889-0 .0072DR -°°33s 

x exp ( -0 .1975DR) .  (30) 

Notice that in the limit of  z*B --, ~ we always have 
NUm,AB approaching zero, except for D R  --, ~ .  This 
peculiarity is due to the procedure for combinat ion of  
the results of  Sections A and B. 

We recommend use of  equations (17)-(22) and 
(26)-(30) only in the tested range o f  D R  values (0.778- 
11.628). 

CONCLUSIONS 

A generalized numerical solution of  the forced con- 
vection heat transfi~r problem in the channels of  plate- 
type monoli th  structures has been obtained for con- 
stant physical properties of  the fluid stream and fully 
developed laminar flow. The analysis, which also 
involved the definition of  the developed velocity 
profile, has been carried out using the finite element 
method (FEM) for numerical solution of  the gov- 
erning partial differential equations. Simulations were 
made with reference to a generalized two-channel geo- 
metric model  derived from inspection of  commercial  
plate-type monoli th  catalysts for SCR-DeNOx appli- 
cations. 

The results of  the hydrodynamic problem have been 
summarized in a g![obal average velocity profile given 
as a function of  the single geometrical parameter DR. 

The temperature problem has been solved both for 
a constant wall temperature (T-condition) and for 
a peripherally and axially constant heat flow (H2- 
condition). A global Nusselt  number (NUAB) has been 
derived in order 1:o describe wall-gas heat transfer 
in the two-channel duct according to a simple one- 
dimensional approach. Also, equations have been 
derived to fit F E M  results, representing the depen- 
dence of  the axial evolution of  the global Nusselt 
number (NUAB(Z*B)) on the cross-sectional shape (i.e. 
on DR).  This has resulted in the definition of  design 
expressions (NUv.AB(DR,z*B) and NUH2,A B (DR,z 'B)) ,  

which allow calculation of  the axial profile of  the 
global bulk temperature along the monoli th  ducts by 
simple integration of  the macroscopic one-dimen- 
sional energy balance for every configuration of  the 
present geometrical model. 

The values of  the Nusselt number  calculated in this 
work for the T- and the H2-boundary conditions rep- 
resent asymptotic limits for the dimensionless gas-  
solid mass transfer coefficients (Sherwood numbers) 
in plate-type monoli th catalysts. Application of  the 
present results to design methods for chemical reactors 
using plate-type monoliths in the selective catalytic 
reduction of  nitrogen oxides will be reported in a 
future paper. 
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